L'idée de Mme Bushway a été d'utiliser la même réaction chimique utilisée pour restaurer un sol contaminé : exposer le plomb dissous dans l'eau à une poudre de phosphate de calcium, qui produit un phosphate solide de plomb restant à l'intérieur du filtre, ainsi que du calcium bénin. Le filtre a un autre atout dans sa manche : sous le phosphate de calcium réside un réservoir d'iodure de potassium.
Quand le phosphate de calcium s'épuise, le plomb dissous dans l'eau va réagir avec l'iodure de potassium, donnant une teinte jaunie à l'eau. Cette nouvelle couleur de l'eau sera ainsi le signal qu'il faut changer le filtre.
Wathon Maung, un élève, a passé plusieurs mois à concevoir le boîtier abritant le filtre, à l'aide de logiciels d'impression 3D. "C'était comme une sorte de petit puzzle que je devais résoudre", s'enthousiasme le lycéen.
Le phosphate de calcium s'accumulait à l'intérieur du filtre, ralentissant la rapidité du principe de réaction. Mais Wathon Maung a découvert qu'il pouvait incorporer des biseaux en forme d'hexagones qui permettent d'assurer l'écoulement de l'eau et empêchent l'accumulation. Le résultat : un écoulement d'environ 7,5 litres par minute, rythme normal pour une eau qui sort du robinet.
Désormais, l'équipe aimerait incorporer un instrument nommé spectrophotomètre, qui détectera le jaunissement de l'eau indiquant la fin de vie du filtre plus rapidement que l’œil nu, à l'aide d'une petite lumière LED d'avertissement.